Open data has become a mantra for governments and, in many cases, the backbone of commercial and academic projects. In particular, data collected by public bodies in the pursuit of regulatory and legal functions tend […]

Open data has become a mantra for governments and, in many cases, the backbone of commercial and academic projects. In particular, data collected by public bodies in the pursuit of regulatory and legal functions tend […]
This funded PhD project seeks to employ data science and text mining methods to enhance our understanding of how a ‘gendering’ of the research pipeline might offer insight into the challenges faced by women as they make the transition from students to independent researchers. We are looking for a passionate, curious, and careful candidate with data science and programming skills, and an interest in NLP and the ethics of data science/AI to work on an exciting collaborative CASE Studentship involving the British Library and supervisors at King’s College London and the Alan Turing Institute/University of Warwick!
Image source: Marta Manso / Wikipedia
I’m really pleased to share a piece that Dani Arribas-Bel and I recently co-authored in Geography Compass on the sometimes fraught relationship between (human) geography and computers, and advocating for the creation of a Geographic Data Science. For those of a ‘TL; DR’ nature (or without the privilege of an institutional subscription!), we wanted to share some of our key ideas in a more accessible format.
Although we had some great responses to our initial call, we’re still looking for the ‘right’ candidate for this fully-funded studentship that is open to both undergraduate finalists as well as completing Masters students. The project involves the application of data science techniques (text-mining, topic modelling, graph analysis) to a large, rich data set of 450,000+ PhD theses in order to understand the evolving geography of academic knowledge production: how are groundbreaking ideas produced and circulated, and how does researcher mobility and institutional capacity shape this process?
I’m really excited to announce the latest addition to our department’s growing stable of computational geography research: a fully-funded 1+3 ESRC CASE studentship involving the application of data science techniques (text-mining, topic modelling, graph analysis) to a large, rich data set of 450,000+ PhD theses in order to understand the evolving geography of academic knowledge production: how are groundbreaking ideas produced and circulated, and how does researcher mobility and institutional capacity shape this process?