Author: jreades

Lecturer in Quantitative Human Geography at King's College London, coder, data head.
Read More
Displacement Map SF and Bay Area

Predicting neighborhood change using big data and machine learning: Implications for theory, methods, and practice

Despite decades of research on neighborhood change, there has been little corresponding methodological development: studies still tend to either rely primarily on demographic data aggregated at the neighborhood level (which masks complex and micro-scale causal dynamics), or on in-depth case studies (which present challenges for generalization). Advances in data science, particularly if informed by critical urban theory, offer the potential to remedy some of these methodological shortcomings. To the extent that these and other approaches support an early warning system designed to be readily understood by stakeholders, they have the ability to empower communities, at a minimum, and potentially to transform policy as well. 

Read More
Aleutia R50

Conjuring: a Self-Contained Jupyter Hub for Teaching

We — me (Jon Reades), Steffen Zschaler (KCL Informatics), and Dani Arribas-Bel (Liverpool Geography) — been awarded money by the SSPP Faculty Education Fund to develop a new approach to using Jupyter notebooks for teaching, conferences, and workshops. Conjuring will use a low-power, small form-factor server running Jupyter Hub without an Internet connection, allowing it to be used in novel environments such as rural schools or in venues (schools, conference centres) where IT and networking support for advanced applications is limited or non-existent.

Read More
https://atlantablackstar.com/2015/02/20/10-us-cities-where-gentrification-is-happening-the-fastest/

Understanding Gentrification through ML

Although it has taken rather a long time to see the light of day, our just-published paper is one of the reasons I love my job: drawing on a mix of data science and deep geographical knowledge, we look at the role that new Machine Learning (ML) techniques – normally seen as just a ‘black box’ for making predictions – can play in helping us to develop a deeper understanding of gentrification and neighbourhood change. For those of a ‘TL;DR’ nature (or without the privilege of an institutional subscription!), we wanted to share some of our key ideas in a more accessible format.

Read More

Geography & Computers: Past, present, and future

I’m really pleased to share a piece that Dani Arribas-Bel and I recently co-authored in Geography Compass on the sometimes fraught relationship between (human) geography and computers, and advocating for the creation of a Geographic Data Science. For those of a ‘TL; DR’ nature (or without the privilege of an institutional subscription!), we wanted to share some of our key ideas in a more accessible format.

Read More

MoDS: Mapping Knowledge with Data Science (MSc + PhD Studentship)

Although we had some great responses to our initial call, we’re still looking for the ‘right’ candidate for this fully-funded studentship that is open to both undergraduate finalists as well as completing Masters students. The project involves the application of data science techniques (text-mining, topic modelling, graph analysis) to a large, rich data set of 450,000+ PhD theses in order to understand the evolving geography of academic knowledge production: how are groundbreaking ideas produced and circulated, and how does researcher mobility and institutional capacity shape this process?

Read More

MoDS: Mapping Knowledge with Data Science

I’m really excited to announce the latest addition to our department’s growing stable of computational geography research: a fully-funded 1+3 ESRC CASE studentship involving the application of data science techniques (text-mining, topic modelling, graph analysis) to a large, rich data set of 450,000+ PhD theses in order to understand the evolving geography of academic knowledge production: how are groundbreaking ideas produced and circulated, and how does researcher mobility and institutional capacity shape this process?