Despite decades of research on neighborhood change, there has been little corresponding methodological development: studies still tend to either rely primarily on demographic data aggregated at the neighborhood level (which masks complex and micro-scale causal dynamics), or on in-depth case studies (which present challenges for generalization). Advances in data science, particularly if informed by critical urban theory, offer the potential to remedy some of these methodological shortcomings. To the extent that these and other approaches support an early warning system designed to be readily understood by stakeholders, they have the ability to empower communities, at a minimum, and potentially to transform policy as well.
